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Al~tract--The reaction of phenathro[3.4-c]fluorene (1) with lithium in tetrahydrofuran (Till 7) or hexamethyl- 
phosphoric triamide (HMPT) leads to the fully aromatic phenanthro[3.4-c]fluorenyl anion (2). The influence of the 
ring current of the five-membered ring and the negative charge on the proton chemical shifts has been analyzed. 
The low-field position of the A-proton (H(16)) is ascribed to the nearby position of the Li-cation. Even in HMPT 
the Li+2 - salt appears to be present as a contact ion pair. 

It is known that cyclopentadiene and its benzologues 
indene and fluorene, are weak acids which can be con- 
verted into their conjugate bases by the addition of a 
strong base. Such carbanions are isoelectronic with ben- 
zenoid hydrocarbons and are stabilized by delocalization 
of the negative charge into the w-system. The spectral 
data of this kind of aromatic anions 2 do not only depend 
on their molecular structure (ring current effects, nega- 
tive charge) but also on the position of the counter-ion. 
In strongly polar solvents they occur predominantly as 
free ions; at lower polarity of the medium they can 
combine with the cation to solvent-separated or loose ion 
pairs, in which the ions may still have their own sol- 
vation shell, and eventually to contact or tight ion pairs, 
which may have an external solvation shell, common to 
both ions (see Scheme). 

Ar-+M+ ~_ ArIM+ ~ Ar-M - 
free ions solvent- contact 

separated ion=pair 
ion pair 

In the preceding paper ~ we reported the synthesis and a 
conformational study of phenanthro[3.4-c]fluorene (1). In 
this paper its conversion into the fully aromatic phenan- 
thro[3.4-c]fluorenyl anion (2) and an analysis of its NMR 
spectrum is described. 
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A recommended method to get such compounds as a 
solvent-separated ion-pair is to use a polar aprotic 
solvent and a small alkali metal. 3 Therefore, we chose 
dimethylsulfoxide (DMSO) as the solvent and n-butyl 
lithium as the source of the alkali metal. 4 When a dry and 
oxygen-free solution was used, the appearance of an 
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intense color indicated the formation of the anion, but 
the stability of the solution was very poor; the color 
turned brown within a few minutes. 

According to van der Kooy 5 the fraction of solvent- 
separated ion-pairs in a solution of fluorenyl lithium in 
tetrahydrofuran (THF) is 0.8 at 25 °. Therefore, we used 
this solvent in a second experiment. Addition of n butyl 
lithium, dissolved in hexane, to a solution of 1 in THF-d8 
under nitrogen led instantaneously to a deep purple 
color, and now the solution remained stable for several 
days. In Fig. 1 the ~H-NMR spectrum of the solution of 
2 is reproduced. The spectrum contains a one-proton 
singlet at 6.39 ppm, which must belong to HE, in the 
aromatic 5-membered ring. Another singlet (two protons) 
is at lower field (~7.64ppm), and there are two AB 
patterns (SA7.13, Sa7.70, and 8A7.14,~n7.57ppm, res- 
pectively). These three signals must be ascribed to the 
pairs of protons E + F, G + H, and G' + H'. Finally, there 
are two ABCD patterns belonging to the terminal rings. 
By decoupling and tickling, and by comparison with the 
spectra of 1 and of hexahelicene (3) the individual posi- 
tions of the protons ABCD and A'B'C'D' could be 
determined (see Table 1). 

The most remarkable figure is the g-value of A in 2. It 
was expected that van der Waals interactions between 
the opposite parts of the helix in I and 2 should be quite 
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similar; the 5-membered ring in 1 is nearly planar) and it 
is known that ttuorenyl anions are also planar, in solution 
as well as in crystals, 6 so that the conformations of 1 and 
2 must be very corresponding. Differences in the posi- 
tions of the protons A, B, C and D in 1 and 2 should then 
mainly be due to the presence of a ring current in the 
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Fig. 1. NMR spectrum of 2 in THF-ds at 90 MHz. 
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5-membered ring in 2; the protons should be at higher 
field, just as in the NMR spectrum of 3. Delocalization of 
the charge in 2 into the other half of the molecule should 
lead "to a shift in the same direction. For the protons B, C 
and D in 2 these upfield shifts are observed, and as 
expected decreasingly in this order. However, proton A 
is shifted downfield over 0.7 ppm relative to 1. The only 
likely explanation is that 2 is present as a contact ion-pair 
in which the cation is very near to proton A; with lithium 
centred above the 5-membered ring at the same side as 
the helical arm this requirement is rather well fulfilled. 

The other data fit rather well into this picture. The 
aromatization of the five-membered ring in the con- 
version of 1 into 2 does not lead to B-values for A', B'C'  
and D', similar to those of 3, because of the additional 
effect of the negative charge. AS-Values for these pro- 
tons in 1 and 2 correspond rather well, however, with 
those of fluorene (4) and fluorenyl anion, (5), especially 
when for the latter compound 8-values of a contact 
ion-pair are used, and the same is true for proton E' at 
the 5-membered ring (A8 ca. 2.2 ppm for 1 and 2, and for 
4 and 5). Small deviations between AS-values in these 

Table 1. a-Values (in ppm) of protons in I and 2, measured in THF-ds a, and 3, measured in CDCh, compared with 
data of some related compounds 

Proton I 2" 3 

A 

B 

C 

D 

A' 

B' 

C' 

D' 

E' 

A' 

B' 

C' 

D' 

E' 

8 . 0 9  

7.18 

7.62 

7.85 

6.39 

6.75 

7.13 

7.61 

4.43 and 4.09 

8 . 8 0  

6.80 

7.17 

7.73 

6.73 

6.19 

6.73 

7.47 

6.39 

7 . 5 8  

6 . 6 5  

7.18 

7.78 

7.58 

6.65 

7.18 

7.78 

7.87 

fluorene, 4d fluorenyl anion, 5 phenanthrene d 

contact solvent- 
ion-pairb separate~ 

ion-pairO, c 

8.00 7.82 

6.55 6.35 

6.90 6.73 

7.38 7.21 

6.04 5.82 

7.79 

7.37 

7.29 

7.53 

3.91 

8.65 

7.61 

7.57 

7.86 

a. 6-Values of 1 in THF-dB and CDCl3 are nearly equal. 

b. Ref. 9; the contact ion-pair is fluorenylsodium in THF; ~-values vary slight- 
ly with the alkalic metal in the order of Na>K>~b. 

c. Ref.tO; data of fluorenyl lithium in THF, which consists of solvent-separat- 
ed ion-pairs for 80%. 

d. Measured in CDCI3. 
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two pairs of compound may be due to delocalization of 
the charge over a larger number of rings in 2 than in 5, as 
a'ppears from the 8-values of the protons E, F, G and H 
in 2 (all ~-values lower than 7.8 ppm), in comparison with 
3 (BE.F7.87; 8C.H7.92 ppm). 

Because the lithium salt of 2, otherwise than that of 5, 
does not seem to form solvent-separated ion pairs in 
THF, we studied the salt in some more powerfully 
cation-solvating solvents. A solution of 2 was diluted 

ion-pair. The reason why 2 remains existing in a tight 
ion-pair, even in very polar solvents is not quite clear. A 
possible explanation may be given by the following 
reasoning. Tight ion-pairs of planar anions (like 5) form 
sandwichlike associates. The possibility of sandwich-like 
structure remains on going from tight-to loose ion-pairs. 
Sandwich-like structures are not possible in salts with 
helical anions. Therefore the tendency to have the two 
ions together (as in contact ion-pairs) predominates. 
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with dimethoxyethane, what leads to a change of the 
ion-pair character according to UV spectroscopy. 7 The 
NMR spectrum of the solution did not change, however. 

Preparation of 2 in the very polar, aprotic solvent 8 
hexamethylphosphoric triamide (HMPT-dls), which is 
extremely powerful in generating solvent separation in 
ion-pairs, gave again an intensely purple-colored solu- 
tion. Even when prepared with metallic lithium in high 
vacuo and keeping the tube sealed and in the dark, the 
color changed into dark green within 24 h, whereas a 
deposit appeared in the solution. The NMR-spectrum of 
a freshly prepared solution was, however, exactly the 
same as that of a THF solution; it changed only gradu- 
ally by the appearance of new signals at 88.0-8.2 ppm, 
until the original spectrum has disappeared completely 
after a week and had been replaced by another complex 
spectrum between 6.5 and 8.Sppm. Apparently, the 
lithium salt of 2 arises even in HMPT as a contact 
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